Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats.
نویسندگان
چکیده
Hypoxia in the tubulointerstitium has been thought to play pivotal roles in the pathophysiology of acute renal failure and the progression of chronic kidney disease. Pre-induction of hypoxia-inducible and renoprotective gene expression may protect subsequent ischemic injury. This study evaluated the efficacy of cobalt, which inhibits HIF-1 degradation and increases the expression level of hypoxia-related genes, in an acute ischemic tubulointerstitial injury model of rats. Ischemic renal injury was induced by 45-min clamping of renal pedicles with contralateral nephrectomy. Elevation of serum creatinine and morphologic injury after the ischemic insult was observed. Administration of cobalt chloride afforded striking functional improvement (mean +/- SEM creatinine in mg/dl: Co treatment group, 2.14 +/- 1.21; control, 3.69 +/- 1.43; P < 0.05) associated with amelioration of tubulointerstitial damage. Cobalt treatment also reduced macrophage infiltration significantly. In the kidney of rats treated with cobalt, mRNA levels of several genes that serve for tissue protection, such as HO-1, EPO, Glut-1, and VEGF, were increased before ischemic injury. Upregulation of HO-1 by cobalt was confirmed at the protein level. Subcutaneous injection of cobalt also ameliorated ischemic injury, which was associated with upregulation of renal HIF-1alpha protein expression. These results suggest that protection against hypoxic tubulointerstitial injury by cobalt administration is mediated by induction of renoprotective gene expression. HIF induction is one possible and attractive explanation for the observed effects.
منابع مشابه
The Study of Petoxifylline Drug Effects on Renal Apoptosis and Bcl2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat
Background & Target: Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on bcl2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated.Methods: In this experimental study, 20 male wistar rats with average weight of...
متن کاملThe Study of Petoxifylline Drug Effects on Renal Apoptosis and Bcl2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat
Background & Target: Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on bcl2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated.Methods: In this experimental study, 20 male wistar rats with average weight of...
متن کاملProtective role of remote ischemic per-conditioning in acute renal injury induced by ischemia reperfusion via TLR-4 and TNF-α signaling pathway in rats
sIntroduction: Acute kidney injury (AKI) induced by ischemia-reperfusion (I / R) of the kidney as an inflammatory process in which multiple inflammatory factors are involved. Recently, one of the modalities of inflammation in AKI is Remote Ischemic Per-Conditioning (RIPerC). Materials and Methods: In this study, bilateral renal artery and vein occlusion were done for 45 minute and reperfusion a...
متن کاملRenoprotective effect of crocin following liver ischemia/ reperfusion injury in Wistar rats
Objective(s): The objectives of the current study were to evaluate the effects of hepatic ischemia/reperfusion (IR) injury on the activity of antioxidant enzymes, biochemical factors, and histopathological changes in rat kidney, and to investigate the effect of crocin on IR-related changes. Materials and Methods: Thirty-two male Wistar rats were randomly allocated into four groups (n=8). The...
متن کاملRenoprotective effects of GABA on ischemia/reperfusion- induced renal injury in hyperglycemic male and female rats
Introduction: Acute kidney injury (AKI) has been known as a complex clinical complication in diabetic patients. The main cause of AKI is ischemia/reperfusion injury (IRI). This study was designed to investigate the protective effects of GABA on renal IRI in hyperglycemic female and male rats. Methods: Sixty STZ induced diabetic male and female Wistar rats were categorized in 10 groups (5 fem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 14 7 شماره
صفحات -
تاریخ انتشار 2003